Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mov Disord ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486423

RESUMEN

BACKGROUND: International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. OBJECTIVES: To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine-learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. MATERIALS: Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2-year follow-up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 ("Clin1"); (2) MRI visual reading blinded to the clinical diagnosis ("MRI"); (3) both MRI visual reading and clinical criteria at V1 ("MRI and Clin1"), and (4) a machine-learning algorithm ("Algorithm"). The gold standard diagnosis was established by expert consensus after a 2-year follow-up. RESULTS: We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit ("Clin1": balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% ("MRI": 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit ("MRI and Clin1": 85.4%; P < 0.0001). The algorithm achieved a diagnostic gain of 9.9% ("Algorithm": 76.1%; P = 0.08). CONCLUSION: Our study shows the use of MRI analysis, whether by visual reading or machine-learning methods, for early differentiation of parkinsonism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
NPJ Parkinsons Dis ; 10(1): 8, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177146

RESUMEN

Cognitive decline is common in Parkinson's disease (PD) and its genetic risk factors are not well known to date, besides variants in the GBA and APOE genes. However, variation in complex traits is caused by numerous variants and is usually studied with genome-wide association studies (GWAS), requiring a large sample size, which is difficult to achieve for outcome measures in PD. Taking an alternative approach, we computed 100 polygenic scores (PGS) related to cognitive, dementia, stroke, and brain anatomical phenotypes and investigated their association with cognitive decline in six longitudinal cohorts. The analysis was adjusted for age, sex, genetic ancestry, follow-up duration, GBA and APOE status. Then, we meta-analyzed five of these cohorts, comprising a total of 1702 PD participants with 6156 visits, using the Montreal Cognitive Assessment as a cognitive outcome measure. After correction for multiple comparisons, we found four PGS significantly associated with cognitive decline: intelligence (p = 5.26e-13), cognitive performance (p = 1.46e-12), educational attainment (p = 8.52e-10), and reasoning (p = 3.58e-5). Survival analyses highlighted an offset of several years between the first and last quartiles of PGS, with significant differences for the PGS of cognitive performance (5 years) and educational attainment (7 years). In conclusion, we found four PGS associated with cognitive decline in PD, all associated with general cognitive phenotypes. This study highlights the common genetic factors between cognitive decline in PD and the general population, and the importance of the participant's cognitive reserve for cognitive outcome in PD.

3.
medRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37790572

RESUMEN

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. Objectives: To investigate the effects of genetic variants on risk and time to LID. Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1,612 PD patients with and 3,175 without LID. Results: We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile=1.38, 95% CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, p=0.0147). Conclusions: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care.

4.
Parkinsonism Relat Disord ; 108: 105287, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706616

RESUMEN

INTRODUCTION: Quantitative biomarkers for clinical differentiation of parkinsonian syndromes are still lacking. Our aim was to evaluate the value of combining clinically feasible manual measurements of R2* relaxation rates and mean diffusivity (MD) in subcortical regions and brainstem morphometric measurements to improve the discrimination of parkinsonian syndromes. METHODS: Twenty-two healthy controls (HC), 25 patients with Parkinson's disease (PD), 19 with progressive supranuclear palsy (PSP) and 27 with multiple system atrophy (MSA, 21 with the parkinsonian variant -MSAp, 6 with the cerebellar variant -MSAc) were recruited. R2*, MD measurements and morphometric biomarkers including the midbrain to pons area ratio and the Magnetic Resonance Parkinsonism Index (MRPI) were compared between groups and their diagnostic performances were assessed. RESULTS: Morphometric biomarkers discriminated better patients with PSP (ratio: AUC 0.89, MRPI: AUC 0.89) and MSAc (ratio: AUC 0.82, MRPI: AUC 0.75) from other groups. R2* and MD measurements in the posterior putamen performed better in separating patients with MSAp from PD (R2*: AUC 0.89; MD: AUC 0.89). For the three-class classification "MSA vs PD vs PSP", the combination of MD and R2* measurements in the posterior putamen with morphometric biomarkers (AUC: 0.841) outperformed each marker separately. At the individual-level, there were seven discordances between imaging-based prediction and clinical diagnosis involving MSA. Using the new Movement Disorder Society criteria for the diagnosis of MSA, three of these seven patients were clinically reclassified as predicted by quantitative imaging. CONCLUSION: Combining R2* and MD measurements in the posterior putamen with morphometric biomarkers improves the discrimination of parkinsonism.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Trastornos Parkinsonianos/patología , Parálisis Supranuclear Progresiva/patología , Imagen de Difusión por Resonancia Magnética , Tronco Encefálico/patología , Atrofia de Múltiples Sistemas/patología , Imagen por Resonancia Magnética/métodos , Diagnóstico Diferencial
5.
Brain ; 146(5): 1873-1887, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36348503

RESUMEN

Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazard ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazard ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazard ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid ß42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.


Asunto(s)
Disfunción Cognitiva , Demencia , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Demencia/complicaciones , Disfunción Cognitiva/etiología , Apolipoproteínas E/genética , Biomarcadores , Receptores de LDL
6.
Psychol Med ; 53(6): 2361-2369, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35135638

RESUMEN

BACKGROUND: Tourette disorder (TD), hallmarks of which are motor and vocal tics, has been related to functional abnormalities in large-scale brain networks. Using a fully data driven approach in a prospective, case-control study, we tested the hypothesis that functional connectivity of these networks carries a neural signature of TD. Our aim was to investigate (i) the brain networks that distinguish adult patients with TD from controls, and (ii) the effects of antipsychotic medication on these networks. METHODS: Using a multivariate analysis based on support vector machine (SVM), we developed a predictive model of resting state functional connectivity in 48 patients and 51 controls, and identified brain networks that were most affected by disease and pharmacological treatments. We also performed standard univariate analyses to identify differences in specific connections across groups. RESULTS: SVM was able to identify TD with 67% accuracy (p = 0.004), based on the connectivity in widespread networks involving the striatum, fronto-parietal cortical areas and the cerebellum. Medicated and unmedicated patients were discriminated with 69% accuracy (p = 0.019), based on the connectivity among striatum, insular and cerebellar networks. Univariate approaches revealed differences in functional connectivity within the striatum in patients v. controls, and between the caudate and insular cortex in medicated v. unmedicated TD. CONCLUSIONS: SVM was able to identify a neuronal network that distinguishes patients with TD from control, as well as medicated and unmedicated patients with TD, holding a promise to identify imaging-based biomarkers of TD for clinical use and evaluation of the effects of treatment.


Asunto(s)
Síndrome de Tourette , Adulto , Humanos , Síndrome de Tourette/diagnóstico por imagen , Síndrome de Tourette/tratamiento farmacológico , Estudios de Casos y Controles , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Cerebelo , Imagen por Resonancia Magnética , Vías Nerviosas , Mapeo Encefálico
7.
IEEE Open J Eng Med Biol ; 3: 96-107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813487

RESUMEN

Goal: Impulse control disorders (ICDs) are frequent non-motor symptoms occurring during the course of Parkinson's disease (PD). The objective of this study was to estimate the predictability of the future occurrence of these disorders using longitudinal data, the first study using cross-validation and replication in an independent cohort. Methods: We used data from two longitudinal PD cohorts (training set: PPMI, Parkinson's Progression Markers Initiative; test set: DIGPD, Drug Interaction With Genes in Parkinson's Disease). We included 380 PD subjects from PPMI and 388 PD subjects from DIGPD, with at least two visits and with clinical and genetic data available, in our analyses. We trained three logistic regressions and a recurrent neural network to predict ICDs at the next visit using clinical risk factors and genetic variants previously associated with ICDs. We quantified performance using the area under the receiver operating characteristic curve (ROC AUC) and average precision. We compared these models to a trivial model predicting ICDs at the next visit with the status at the most recent visit. Results: The recurrent neural network (PPMI: 0.85 [0.80 - 0.90], DIGPD: 0.802 [0.78 - 0.83]) was the only model to be significantly better than the trivial model (PPMI: ROC AUC = 0.75 [0.69 - 0.81]; DIGPD: 0.78 [0.75 - 0.80]) on both cohorts. We showed that ICDs in PD can be predicted with better accuracy with a recurrent neural network model than a trivial model. The improvement in terms of ROC AUC was higher on PPMI than on DIGPD data, but not clinically relevant in both cohorts. Conclusions: Our results indicate that machine learning methods are potentially useful for predicting ICDs, but further works are required to reach clinical relevance.

8.
Curr Opin Neurol ; 34(4): 547-555, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33967198

RESUMEN

PURPOSE OF REVIEW: To review recent findings and research directions on impulse control disorders and related behaviors (ICDRBs) in Parkinson's disease (PD). RECENT FINDINGS: Longitudinal studies found that prevalence increases during PD progression, incident ICDRBs being around 10% per year in patients treated with dopaminergic therapies. Screening tools and severity scales already developed have been validated and are available in several countries and languages. The main clinical risk factors include young age, male gender, type, doses and duration of dopaminergic therapy, PD motor severity and dyskinesia, depression, anxiety, apathy, sleep disorders, and impulsivity traits. Genetic factors are suspected by a high estimated heritability, but individual genes and variants remain to be replicated. Management of ICDRBs is centered on dopamine agonist decrease, with the risk to develop withdrawal symptoms. Cognitive behavioral therapy and subthalamic nucleus deep brain stimulation also improve ICDRBs. In the perspective of precision medicine, new individual prediction models of these disorders have been proposed, but they need further independent replication. SUMMARY: Regular monitoring of ICDRB during the course of PD is needed, particularly in the subject at high risk of developing these complications. Precision medicine will require the appropriate use of machine learning to be reached in the clinical setting.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Disruptivos, del Control de Impulso y de la Conducta , Enfermedad de Parkinson , Núcleo Subtalámico , Trastornos Disruptivos, del Control de Impulso y de la Conducta/epidemiología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/genética , Trastornos Disruptivos, del Control de Impulso y de la Conducta/terapia , Humanos , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Factores de Riesgo
9.
Parkinsonism Relat Disord ; 86: 74-77, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33872999

RESUMEN

OBJECTIVE: To study the association between impulse control disorders (ICDs) in Parkinson's disease (PD) and genetic risk scores (GRS) for 40 known or putative risk factors (e.g. depression, personality traits). BACKGROUND: In absence of published genome-wide association studies (GWAS), little is known about the genetics of ICDs in PD. GRS of related phenotypes, for which large GWAS are available, may help shed light on the genetic contributors of ICDs in PD. METHODS: We searched for GWAS on European ancestry populations with summary statistics publicly available for a broad range of phenotypes, including other psychiatric disorders, personality traits, and simple phenotypes. We separately tested their predictive ability in two of the largest PD cohorts with clinical and genetic available: the Parkinson's Progression Markers Initiative database (N = 368, 33% female, age range = [33-84]) and the Drug Interaction With Genes in Parkinson's Disease study (N = 373, 40% female, age range = [29-85]). RESULTS: We considered 40 known or putative risk factors for ICDs in PD for which large GWAS had been published. After Bonferroni correction for multiple comparisons, no GRS or the combination of the 40 GRS were significantly associated with ICDs from the analyses in each cohort separately and from the meta-analysis. CONCLUSION: Albeit unsuccessful, our approach will gain power in the coming years with increasing availability of genotypes in clinical cohorts of PD, but also from future increase in GWAS sample sizes of the phenotypes we considered. Our approach may be applied to other complex disorders, for which GWAS are not available or limited.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta/etiología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/genética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
10.
Med Image Anal ; 67: 101848, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091740

RESUMEN

We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extracted. For each of them, we reported the used data set, the feature types, the algorithm type, performance and potential methodological issues. The impact of these characteristics on the performance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoencephalography variables significantly improved predictive performance compared to not including them, whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a significant effect. The good performance of cognitive assessments questions the wide use of imaging for predicting the progression to AD and advocates for exploring further fine domain-specific cognitive assessments. We also identified several methodological issues, including the absence of a test set, or its use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. These issues highlight the importance of adhering to good practices for the use of machine learning as a decision support system for the clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Disfunción Cognitiva/diagnóstico por imagen , Progresión de la Enfermedad , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
11.
Mov Disord ; 36(2): 460-470, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33137232

RESUMEN

BACKGROUND: Machine learning algorithms using magnetic resonance imaging (MRI) data can accurately discriminate parkinsonian syndromes. Validation in patients recruited in routine clinical practice is missing. OBJECTIVE: The aim of this study was to assess the accuracy of a machine learning algorithm trained on a research cohort and tested on an independent clinical replication cohort for the categorization of parkinsonian syndromes. METHODS: Three hundred twenty-two subjects, including 94 healthy control subjects, 119 patients with Parkinson's disease (PD), 51 patients with progressive supranuclear palsy (PSP) with Richardson's syndrome, 35 with multiple system atrophy (MSA) of the parkinsonian variant (MSA-P), and 23 with MSA of the cerebellar variant (MSA-C), were recruited. They were divided into a training cohort (n = 179) scanned in a research environment and a replication cohort (n = 143) examined in clinical practice on different MRI systems. Volumes and diffusion tensor imaging (DTI) metrics in 13 brain regions were used as input for a supervised machine learning algorithm. To harmonize data across scanners and reduce scanner-dependent effects, we tested two types of normalizations using patient data or healthy control data. RESULTS: In the replication cohort, high accuracies were achieved using volumetry in the classification of PD-PSP, PD-MSA-C, PSP-MSA-C, and PD-atypical parkinsonism (balanced accuracies: 0.840-0.983, area under the receiver operating characteristic curves: 0.907-0.995). Performances were lower for the classification of PD-MSA-P, MSA-C-MSA-P (balanced accuracies: 0.765-0.784, area under the receiver operating characteristic curve: 0.839-0.871) and PD-PSP-MSA (balanced accuracies: 0.773). Performance using DTI was improved when normalizing by controls, but remained lower than that using volumetry alone or combined with DTI. CONCLUSIONS: A machine learning approach based on volumetry enabled accurate classification of subjects with early-stage parkinsonism, examined on different MRI systems, as part of their clinical assessment. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Diagnóstico Diferencial , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Trastornos Parkinsonianos/diagnóstico por imagen , Parálisis Supranuclear Progresiva/diagnóstico por imagen
12.
Brief Bioinform ; 22(2): 1560-1576, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33316030

RESUMEN

In order to reach precision medicine and improve patients' quality of life, machine learning is increasingly used in medicine. Brain disorders are often complex and heterogeneous, and several modalities such as demographic, clinical, imaging, genetics and environmental data have been studied to improve their understanding. Deep learning, a subpart of machine learning, provides complex algorithms that can learn from such various data. It has become state of the art in numerous fields, including computer vision and natural language processing, and is also growingly applied in medicine. In this article, we review the use of deep learning for brain disorders. More specifically, we identify the main applications, the concerned disorders and the types of architectures and data used. Finally, we provide guidelines to bridge the gap between research studies and clinical routine.


Asunto(s)
Encefalopatías/terapia , Aprendizaje Profundo , Encefalopatías/clasificación , Encefalopatías/genética , Diagnóstico Diferencial , Progresión de la Enfermedad , Humanos , Medicina de Precisión/métodos , Teléfono Inteligente , Resultado del Tratamiento
13.
Front Psychiatry ; 11: 593336, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384629

RESUMEN

We ranked third in the Predictive Analytics Competition (PAC) 2019 challenge by achieving a mean absolute error (MAE) of 3.33 years in predicting age from T1-weighted MRI brain images. Our approach combined seven algorithms that allow generating predictions when the number of features exceeds the number of observations, in particular, two versions of best linear unbiased predictor (BLUP), support vector machine (SVM), two shallow convolutional neural networks (CNNs), and the famous ResNet and Inception V1. Ensemble learning was derived from estimating weights via linear regression in a hold-out subset of the training sample. We further evaluated and identified factors that could influence prediction accuracy: choice of algorithm, ensemble learning, and features used as input/MRI image processing. Our prediction error was correlated with age, and absolute error was greater for older participants, suggesting to increase the training sample for this subgroup. Our results may be used to guide researchers to build age predictors on healthy individuals, which can be used in research and in the clinics as non-specific predictors of disease status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...